Parallel Execution Plans

Jonathan Lewis
jonathanlewis.wordpress.com

My History

Independent Consultant

33+ yearsinIT]
28+ using Oracle (5.1a on MSDOS 3.3 » i ! Oracls

Strategy, DeSign, ReVieW, ORACLE DATABASE 10g InSIthS

. g . New Features Tales of the Oak Table
Briefings, Educational,
Trouble-shooting

Oracle author of the year 2006
Select Editor’s choice 2007 . :
UKOUG Inspiring Presenter 2011 [Giadiazl

aclelsf Cost-Based
ODTUG 2012 Best Presenter (d/b) Urucl=81 6Sraaé‘i a

UKOUG Inspiring Presenter 2012 | gt
UKOUG Lifetime Award (IPA) 2013
Member of the Oak Table Network

Oracle ACE Director

T
G,
Lo

Oracle Core

Essential Internals for

Fundamentals DBAs and Developers

Apress®

Jonathan Lewis | Many slides have a foot-note. This is just two lines summarizing the highlights of the PX Plans
© 2011 - 2016 slide so that you have a reference when reading the handouts at a later date. p.2/34

Topics

» What are we looking for in a plan
— Order of operation (row source generation)
— Resource usage

— Early elimination of data

* What tools can we use
— dbms_xplan
— v3pg_tgstat
— Extended sql_trace, or equivalent

— v$sgl_monitor - if licensed (diagnostic + performance)

Jonathan Lewis PX Plans
© 2011 - 2016 p.3/34

Terminology

QC: "Query coordinator"” - the process controlling the query
(and passing data to the front end)
PX Server: single process used in parallel query
a.k.a Parallel server, Parallel Query Slave, PQ slave, PX slave
Slave Set: A set of PX Servers performing one operation of an

execution plan - commonly a single query will use two sets of PX
servers

DOP: "degree of parallelism" - number of slaves in each slave
set involved in a full parallel execution plan

Table Queue: Logical communication channel between two sets of
slaves, or from a slave set to the QC

a.k.a Virtual table

DFO:. "data flow operation" - the set of actions that moves data
through a single table queue
DFO tree: Set of DFOs moving data from its source to the QC

Jonathan Lewis PX Plans
© 2011 - 2016 p.4/34

Big Problem

SMALL PRINT

Jonathan Lewis PX Plans
© 2011 - 2016 p.5/34

Sample Data (a)

create table €1 as

select
rownum id,
to char (rownum) small vc,
rpad('x"',100) padding
from all objects

where rownum <= 70;

alter table tl add constraint tl pk primary key(id);

begin
dbms stats.gather table stats(
user,
"tl',

method opt => 'for all columns size 1'
) ;

end; Repeat for matching t2 and t3

Jonathan Lewis PX Plans
© 2011 - 2016 p.6/34

Sample Data ()

create table t4 as

select

from

4

begin

tl.id id1l,

t2.1d 1dz2,

t3.1d 1d3,

rpad (rownum, 10) small vc,
rpad('x"',100) padding

tl, t2, t3 -- 343,000 rows

dbms stats.gather table stats(

) ;

end;

user,
't4',

method opt => 'for all columns size 1'

Jonathan Lewis
© 2011 - 2016

PX Plans
p.7/34

Sample Query (serial)

select

from

where

and
and
and
and

and

/*+ gather plan statistics */

count (tl.small vc), count (tZ2.small vc),

count (t3.small vc), count (t4.small vc)

t4,
tl,
t2,
t3

tl.id = t4.1idl

t2.1id = t4.1d2

t3.1d = t4.1d3
tl.small vc in (1,2,3)
t2.small vc in (1,2,3,4)
t3.small vc in (1,2,3,4,5)

-- type mismatch

'

Jonathan Lewis
© 2011 - 2016

PX Plans
p.8/34

Sample Query (serial plan)

select * from table(dbms xplan.display cursor(null,null,'allstats last"));

| Id | Operation | Name | Starts | E-Rows | A-Rows |
| 0O | SELECT STATEMENT | | 1 | | 1 |
| 1 | SORT AGGREGATE | | 1 | 1 | 1
| x 2 | HASH JOIN | | 1 56 | 60 |
|* 3 | TABLE ACCESS FULL | T3 | 1 | 5 | 5
x4	HASH JOIN		1	810	840
* 5	TABLE ACCESS FULL	T2	1	4	4
* 6	HASH JOIN		1	14491	14700
* 7	TABLE ACCESS FULL	T1	1	3 S	
\ 8 | TABLE ACCESS FULL| T4 | 1 | 343K | 343K|
leading (t4 tl t2 t3)

use hash(tl) swap join inputs(tl)

use hash (t2) swap join inputs(t2)

use hash (t3) swap join inputs(t3)

Jonathan Lewis | We can read the plan by "first child - recursive descent". The order of action is: scan PX Plans

©2011 - 2016 and hash t3, scan and hash t2, scan and hash t1, scan t4 and probe x3 p.9/34

Sample Query (serial trace)

alter system flush buffer cache;

alter session set events

Tablescan table t3

WAIT #: nam="'db
WAIT #: nam="'db
Tablescan table t2

WAIT #: nam="'db
WAIT #: nam="'db
Tablescan table t1
WAIT #: nam='db
WAIT #: nam="'db

file
file

file
file

file
file

Tablescan table t4 (direct)

WAIT #:
WATT #:

WAIT #140096457765816:

sequential read’
scattered read'

sequential read’
scattered read'

sequential read’
scattered read'

nam='db file sequential read'
nam='direct path read'

ela= 2207
ela= 570
ela= 458
ela= 387
ela= 524
ela= 477
ela= 502
ela= 1658

nam='direct path read'

'10046 trace name context forever,

b#=640
b#=641

b#=384
b#=385

b#=128
b#=129

b#=896
£d=897

level 8';

bs=1 obj#=235626

obj#=235626

obj#=235624
obj#=235624

obj#=235622
obj#=235622

1 obj#=235628
bc=127 obj#=235628

Jonathan Lewis
© 2011 - 2016

As a little check for order of operation, the 10046 trace file (flushing the buffer cache
before doing the test) can show us the physical read waits.

PX Plans
p.10/34

Going Parallel (hash/hash)

select
/*+
gather plan statistics
leading (t4 tl t2 t3)
parallel (t4,2) full (t4) parallel (tl1,2) full(tl)
parallel (t2,2) full (t2) parallel (t3,2) full (t3)

use hash(tl) swap join inputs(tl)
pqg distribute (tl hash hash)

use hash (t2) swap join inputs(t2)
pg distribute (t2 hash hash)

use hash (t3) swap join inputs(t3)
pg distribute (t3 hash hash)
*/
count (tl.small vc), count (tZ2.small vc),
count (t3.small vc), count (t4.small vc)
from

Jonathan Lewis | parallel/full - force a parallel full tablescan. use_hash/swap_join_inputs - do a hash PX Plans
©2011 - 2016 join with swap; when tN is the "next" table in the join hash distribute both inputs p.11/34

Going Parallel (broadcast)

select
/*+
gather plan statistics
leading (t4 tl t2 t3)
parallel (t4,2) full (t4) parallel (tl1,2) full(tl)
parallel (t2,2) full (t2) parallel (t3,2) full (t3)

use hash(tl) swap join inputs(tl)
pqg distribute (tl none broadcast)

use hash (t2) swap join inputs(t2)
pg distribute (t2 none broadcast)

use hash (t3) swap join inputs(t3)
pg distribute (t3 none broadcast)
*/
count (tl.small vc), count (tZ2.small vc),
count (t3.small vc), count (t4.small vc)
from

Jonathan Lewis | parallel/full - force a parallel full tablescan. use_hash/swap_join_inputs - do a hash PX Plans
©2011 - 2016 join with swap; when tN is the next table in the join broadcast it p.12/34

Execution plan (broadcast)

Id	Operation	Name	Rows	TQ	IN-OUT	PQ Distrib
0	SELECT STATEMENT					
1	SORT AGGREGATE		1			
2 PX COORDINATOR						
3	PX SEND QC (RANDOM)	:TQ10003	1] Q1,03	P->S	QC (RAND)	
4	SORT AGGREGATE		1] Q1,03	PCWP		
5	HASH JOIN		56	Q1,03	PCWP	
6	PX RECEIVE		5	Q1,03	PCWP	
7 PX SEND BROADCAST	:TQ10000	5	Q1,00	P->P	BROADCAST	
8	PX BLOCK ITERATOR		51 Q1,00	PCWC		
9	TABLE ACCESS FULL	T3	5	Q1,00	PCWP	
10	HASH JOIN		810	Q1,03	PCWP	
11	PX RECEIVE		4	Q1,03	PCWP	
12	PX SEND BROADCAST	:TQ10001	4	Q1,01	P->P	BROADCAST
13	PX BLOCK ITERATOR		4	Q1,01	PCWC	
14	TABLE ACCESS FULL	T2	4	Q1,01	PCWP	
15	HASH JOIN		14491	Q1,03	PCWP	
16	PX RECEIVE		3	Q1,03	PCWP	
17	PX SEND BROADCAST	:TQ10002	3	Q1,02	P->P	BROADCAST
18	PX BLOCK ITERATOR		3	Q1,02	PCWC	
19	TABLE ACCESS FULL	T1	3] Q1,02	PCWP		
20	PX BLOCK ITERATOR		343K	01,03	PCWC	
21	TABLE ACCESS FULL	T4	343K	Q1,03	PCWP	
Jonathan Lewis | We now have 22 lines instead of 9 but, between all the send/receive operations we PX Plans
©2011 - 2016 can still see the shape of the four table hash join with the original join order. p.13/34

Parallel Images

Parallel execution Parallel execution
servers for servers for full
ORDER BY table scan
operation

A-G

/

/ employees Table
4+

Parallel
oy | o i
oordinator
p g

SELECT +*
from employvees T-7
ORDER BY last name;

At

Intra- Inter- Intra-
Operation Operation Operation
parallelism parallelism parallelism

Oracle® Database VLDB and Partitioning Guide Ch. 8

Jonathan Lewis | Conveniently this simple example shows just two send/receive pairs: from slave set 1
©2011 - 2016 to slave set 2, then from slave set to the query coordinator. Real-life is more complex

PX Plans
p.14/34

Parallel Execution - visual

Parallel to
Serial

Parallel to
parallel

Parallel to
parallel

Co-ordinator

A
r A\

Slave P0O03

Slave P004

A
r A\

A
s N\

Slave P005

A
s A\

N

Slave P0O0O

Slave P001

Slave P002

Slave P004

Virtual Tables
(TQ) in SGA

—

Jonathan Lewis
© 2011 - 2016

Complex queries may need many layers of parallel execution - but Oracle limits a
query to two sets of parallel execution slaves, and this has interesting consequences

PX Plans
p.15/34

Execution plan (broadcast)

| Id | Operation | Name | Rows | TQ |IN-OUT| PQ Distrib |
| 0 | SELECT STATEMENT | | | | |

1	SORT AGGREGATE		1			
2 PX COORDINATOR						
3 PX SEND QC (RANDOM)	:TQ10003	1	Q1,03	P->S	QC (RAND)	
4 SORT AGGREGATE		1	Q1,03	PCWP		
5	HASH JOIN		56	01,03	PCWP	
6	PX RECEIVE		51 Q1,03	PCWP		
7	PX SEND BROADCAST	:TQ10000	5	Q1,00	P->P	BROADCAST
8	PX BLOCK ITERATOR		5	Q1,00	PCWC	
9	TABLE ACCESS FULL	T3	5	Q1,00	PCWP	
10	HASH JOIN		810	Q1,03	PCWP	

11	PX RECEIVE		4	Q1,03	PCWP	
12	PX SEND BROADCAST	:TQ10001	4	Q1,01	P->P	BROADCAST
13	PX BLOCK ITERATOR		4	Q1,01	PCWC	
14	TABLE ACCESS FULL	T2	4	Q1,01	PCWP	
15	HASH JOIN		14491	Q1,03	PCWP	

16	PX RECEIVE		3	Q1,03	PCWP	
17	PX SEND BROADCAST	:TQ10002	3	Q1,02	P->P	BROADCAST
18	PX BLOCK ITERATOR		3	Q1,02	PCWC	
19	TABLE ACCESS FULL	T1	3	Q1,02	PCwP	
20	PX BLOCK ITERATOR		343K	Q1,03	PCWC	

| 21 | TABLE ACCESS FULL | T4 | 343K| Q1,03 | PCWP | |
Jonathan Lewis | For parallel queries we have to follow the "virtual tables", known as "'table queues™. PX Plans
©2011 - 2016 The order of operation follows the sequence of generating TQs (Name column.) p.16/34

Execution plan (broadcast)

Id	Operation	Name	Rows	TQ	IN-OUT	PQ Distrib
6	PX RECEIVE		5] Q1,03	PCWP		
7	PX SEND BROADCAST	:TQ10000	5	1,00	P->P	BROADCAST
8	PX BLOCK ITERATOR		5	1,00	PCWC	
9	TABLE ACCESS FULL	T3	5	Q1,00	PCWP	
11	PX RECEIVE		4	Q1,03	PCWP	
12	PX SEND BROADCAST	:TQ10001	4	Q1,01	P->P	BROADCAST
13	PX BLOCK ITERATOR		4	Q1,01	PCWC	
14	TABLE ACCESS FULL	T2	4	Q1,01	PCWP	
16	PX RECEIVE		3] Q1,03	PCWP		
17	PX SEND BROADCAST	:TQ10002	3	Q1,02	P->P	BROADCAST
18	PX BLOCK ITERATOR		3	1,02	PCWC	
19	TABLE ACCESS FULL	TI	3	Q1,02	PCWP	
Jonathan Lewis | In this case the order of operation matches the serial plan. All three tables are inputs PX Plans

©2011 - 2016 to the same (TQ10003) virtual table - so a single slave set must be receiving them. p.17/34

Execution plan (broadcast)

Id	Operation	Name	Rows	TQ	IN-OUT	PQ Distrib
0	SELECT STATEMENT					
1	SORT AGGREGATE		1			
2	PX COORDINATOR					
3	PX SEND QC (RANDOM)	:TQ10003	1	Q1,03	P->S	QC (RAND)
4	SORT AGGREGATE		1	Q1,03	PCwP	
5	HASH JOIN		56	Q1,03	PCWP	
6	PX RECEIVE		5	Q1,03	PCWP	
10	HASH JOIN		810	Q1,03	PCWP	
11	PX RECEIVE		4	Q1,03	PCWP	
15	HASH JOIN		14491	Q1,03	PCWP	
16	PX RECEIVE		3	Q1,03	PCwP	
20	PX BLOCK ITERATOR		343K	Q1,03	PCWC	
21	TABLE ACCESS FULL	T4	343K	Q1,03	PCWP	
Jonathan Lewis | Think of the name column as the virtual table being used as a pipeline, then the TQ PX Plans
©2011 - 2016 column tells you how a set of slaves finds data for that virtual table. p.18/34

PQ TQ stats (v$pg_tgstat)

select

from

dfo number,

server type, -- producer/consumer/ranger

tg id,
instance, -— for RAC
process, —— pPNNN

num rows

vSpg tgstat

order by

dfo number,

tg id,

server type desc,
instance,

process

Jonathan Lewis | TQZ10003 in the plan can be aligned with dfo_number = 1, tq_id = 3 (We will ignore
©2011 - 2016 the significance of DFQO's (Data Flow Operation trees) at present.

PX Plans
p.19/34

PQ Stats (broadcast)

DFO NUMBER TQO ID SERVER TYPE INSTANCE PROCESS NUM ROWS
1 0 Producer (send) 1 P002 10
1 P003 0 t3 scan
Consumer (receive) 1 P0O0O 5
1 P0O01 5 t3 hash
1 Producer 1 P0O0O2 8
1 POO3 0 t2 scan
Consumer 1 POOO 4
1 POO1 4 t2 hash
2 Producer 1 P0O02 6
1 P0OO3 0 tl scan
Consumer 1 POOO 3
1 POO1 3 tl hash
3 Producer 1 P0OOO 1 t4 scan,
1 POO1 1 probe & ct
Consumer 1 QC 2

group by and order by result in rows where the QC operates as server_type = Ranger

Jonathan Lewis | Running parallel 2: we see three consecutive jobs as p002 & p003 broadcast N x 2 PX Plans
©2011 - 2016 rows to p000 & p001; then p000 & p001 produce the result of all three joins. p.20/34

Trace files (broadcast)

In the previous slide slaves pO00 and p001 scanned table t4 - so what do their trace files say
about the work done - the estimate was to generate 343,000 rows before joining

| 20 |
21 |

PO00
STAT #N
STAT #N

PO01
STAT #N
STAT #N

PX BLOCK ITERATOR
TABLE ACCESS FULL

1id=20 cnt=40 pid=15 pos=2
id=21 cnt=40 pid=20 pos=1

id=20 cnt=20 pid=15 pos=2
id=21 cnt=20 pid=20 pos=1

| | 343K| 01,03 | PCWC | |
| T4 | 343K| 01,03 | PCWP | |

obj]=0 op='PX BLOCK ITERATOR (card=343000)"'
ob]J=235635 op='TABLE ACCESS FULL T4 (card=343000)"

obj]=0 op='PX BLOCK ITERATOR (card=343000)"'
obj=235635 op='TABLE ACCESS FULL T4 (card=343000)"

This shows a total of 60 rows returned from the table scan of t4 before the first join.
This is the effect of Bloom filtering.
On the Exadata database machine the Bloom filters can be sent to the storage server

The storage server can use storage indexes and smart scans to minimise disk and network load

Jonathan Lewis
© 2011 - 2016

A Bloom filter changes a join into a predicate. It eliminates (most of the) data that PX Plans
you don't want, allows all the data you do want - but may return some unwanted data p.21/34

Parallel display cursor()

| Id |Operation | Name | E-Rows | TO | IN-OUT| PQ Dist | A-Rows |
| O|SELECT STATEMENT | | | | | | 1]
| 1| SORT AGGREGATE | | 1 | | | | 1]
| 2| PX COORDINATOR | | | | | | 2|
| 3] PX SEND QC (RANDOM) | :TQ10003]| 1 | Q1,03 | P->S | QC (RAND) | 0]
4 SORT AGGREGATE		1	01,03	PCWP		2	
* 5	HASH JOIN		56	Q1,03	PCWP		60
6	PX RECEIVE		5 1 01,03	PCWP		10	
7 PX SEND BROADCAST	:TQ10000]	5] Q1,00	P->P	BROADCAST	0		
8] PX BLOCK ITERATOR		5 1 01,00	PCWC		5]		
* 9	TABLE ACCESS FULL	T3	5 1 Q1,00	PCWP		5]	
%10	HASH JOIN		810	Q1,03	PCWP		60
11	PX RECEIVE		4	Q1,03	PCWP		8
12	PX SEND BROADCAST	:TQ10001	4	01,01	P->P	BROADCAST	0
13	PX BLOCK ITERATOR		4	01,01	PCWC		4
*14	TABLE ACCESS FULL	T2	4	01,01	PCWP		4
*15	HASH JOIN		14491	Q1,03	PCWP		60
16	PX RECEIVE		3] Q1,03	PCWP		6	
17	PX SEND BROADCAST	:TQ10002	3] 01,02	P->P	BROADCAST	0	
18] PX BLOCK ITERATOR		3] 01,02	PCWC		3		
*19]	TABLE ACCESS FULL	T1	3] 01,02	PCWP		3	
20	PX BLOCK ITERATOR		343K	Q1,03	PCWC		60
*21	TABLE ACCESS FULL	T4	343K	Q1,03	PCWP		60
Jonathan Lewis | After running the query just once I've used the format option 'allstats parallel’ without PX Plans

©2011-2016 | "last™ to get this output (and then I've deleted several columns). p.22/34

Execution plan (broadcast)

Predicate Information

(identified by operation id):

5 - access("T3"."ID"="T4"."ID3")

9

10
14

15
19

21

access(:Z>=:Z AND :Z<=:Z)

filter ((TO NUMBER ("T3"."SMALL VC")=1 OR
OR TO NUMBER("T3"."SMALL VC")=3 OR
OR TO NUMBER("T3"."SMALL VC")=5))

access ("T2"."ID"="T4" "ID2")

access(:Z>=:Z AND :Z<=:Z)

filter ((TO NUMBER ("T2"."SMALL VC")=1 OR
OR TO NUMBER("T2"."SMALL VC")=3 OR

access ("T1"."ID"="T4" . "ID1")

access(:Z>=:Z AND :Z<=:Z)

-- check rowid ranges

TO NUMBER ("T3"."SMALL VC")=2
TO NUMBER ("T3"."SMALL VC")=4

TO NUMBER ("T2"."SMALL VC")=2
TO NUMBER ("T2"."SMALL VC")=4))

filter ((TO _NUMBER("T1"."SMALL VC")=1 OR TO NUMBER("T1"."SMALL VC")=2 OR

TO NUMBER ("T1"."SMALL VC")=3))
access (:Z2>=:7Z AND :Z<=:7)
filter (SYS_OP BLOOM FILTER LIST(
SYS_OR_BLOOM_FILTER(:BF0000,"T4"
SYS_OR_BLOOM_FILTER(:BF0000,"T4"
SYS_OR_BLOOM_FILTER(:BF0000,"T4"
)) -— Blooom filters from all three

. "IDl"),
. "ID2"),
. "ID3")

dimensions used during tablescan

Jonathan Lewis
© 2011 - 2016

In 11g the predicate section shows that three Bloom filters were used during the t4 PX Plans
tablescan. They identify which column is filtered on, but the BF numbering is odd. p.23/34

G raph IC (broadcast)

P0O00O/P001
Build hash) Build hash) Build hash
create B3 t create B2 t create Bl
scan and filter t4
probe tl, t2, t3
aggregate
QC
scan t3 scan t2 scan tl
P002/P003 Time
>

Jonathan Lewis
© 2011 - 2016

PX Plans
p.24/34

12c Broadcast plan

Id	Operation	Name	Rows	Bytes	Cost	TO	IN-OUT	PQ Distrib]
0	SELECT STATEMENT				351			
1	SORT AGGREGATE		1	38				
2 PX COORDINATOR								
3 PX SEND QC (RANDOM)	:TQ10000		38		91,00	P->S	QC (RAND)	
4	SORT AGGREGATE			38		Q1,00	PCWP	
* 5	HASH JOIN		56	2128	351	Q1,00	PCWP	
6	JOIN FILTER CREATE	:BF0000	5 30	2	Q1,00	PCWP		
[* 7	TABLE ACCESS FULL	T3	5	30	2	Q1,00	PCWP	
* 8	HASH JOIN		810	25920	349	Q1,00	PCWP	
9	JOIN FILTER CREATE	:BF0001	4	24	2	Q1,00	PCWP	
[*10	TABLE ACCESS FULL	T2	4	24	2	Q1,00	PCWP	
*11	HASH JOIN		14491	367K	347	Q1,00	PCWP	
12	JOIN FILTER CREATE	:BF0002	3 18	2	901,00	PCWP		
*13	TABLE ACCESS FULL	T1	3 18	2	Q1,00	PCWP		
14	JOIN FILTER USE	:BF0000	343K	6699K	345	Q1,00	PCWP	
15	JOIN FILTER USE	:BF0001	343K	6699K	345	Q1,00	PCWP	
16	JOIN FILTER USE	:BF0002	343K	6699K	345	Q1,00	PCWP	
17	PX BLOCK ITERATOR		343K	06699K	345	Q1,00	PCWC	
*18	TABLE ACCESS FULL	T4	343K	06699K	345	Q1,00	PCWP	
Jonathan Lewis | There are many differences in the 12c, which changes dramatically, caching scans, PX Plans

©2011 - 2016 avoiding many table queues, and showing us where the filters are created and used. p.25/34

Execution plan (hash / hash)

Id	Operation	Name	Rows	Time	TQ	IN-OUT	PQ Distrib
0	SELECT STATEMENT						
1	SORT AGGREGATE		1				

2	PX COORDINATOR						
3	PX SEND QC (RANDOM)	:TQ10006	1		Q1,06	P->S	QC (RAND)
4	SORT AGGREGATE		1	Q1,06	PCWP		
* 5	HASH JOIN		56	00:00:29	Q1,06	PCWP	
6	JOIN FILTER CREATE	:BFO000	5] 00:00:01	Q1,06	PCWP		
7	PX RECEIVE		5] 00:00:01	Q1,06	PCWP		
8	PX SEND HASH	:TQ10004	5] 00:00:01	Q1,04	P->P	HASH	
9	PX BLOCK ITERATOR		5] 00:00:01	Q1,04	PCWC		
[* 10	TABLE ACCESS FULL	T3	5] 00:00:01	Q1,04	PCWP		
11	PX RECEIVE		810	00:00:29	Q1,06	PCWP	
12	PX SEND	:TQ10005	810	00:00:29	Q1,05	P->P	HASH
13		:BFO000	810	00:00:29	Q1,05	PCWP	
* 14			810	00:00:29	Q1,05	PCWP	
15		:BFO001	4	00:00:01	Q1,05	PCWP	
16			4	00:00:01	Q1,05	PCWP	
17	PX SEND HASH	:TQ10002	4	00:00:01	Q1,02	P->P	HASH
18	PX BLOCK ITERATOR		4	00:00:01	Q1,02	PCWC	
[* 19	TABLE ACCESS FULL	T2	4	00:00:01	Q1,02	PCWP	
20	PX RECEIVE		14491	00:00:29	01,05	PCWP	

21	PX SEND	:TQ10003	14491	00:00:29	Q1,03	P->P	HASH
22		:BFOOOL	14491	00:00:29	Q1,03	PCWP	
* 23			14491	00:00:29	Q1,03	PCWP	
24		:BF0002	3] 00:00:01	Q1,03	PpPCwWpP		
25			3	00:00:01	Q1,03	PCWP	
26	PX SEND HASH	:TQ10000	3] 00:00:01	Q1,00	P->P	HASH	
27	PX BLOCK ITERATOR		3] 00:00:01	Q1,00	PCWC		
* 28	TABLE ACCESS FULL	T1	3] 00:00:01	Q1,00	PCWP		
29	PX RECEIVE		343K	00:00:29	01,03	PCWP	
30	PX SEND HASH	:TQ10001	343K	00:00:29	Q1,01	P->P	HASH
31	JOIN FILTER USE	:BF0002	343K	00:00:29	01,01	PCWP	
32	PX BLOCK ITERATOR		343K	00:00:29	01,01	PCWC	
* 33	TABLE ACCESS FULL	T4	343K	00:00:29	Q1,01	PCWP	

Jonathan Lewis
© 2011 - 2016

We've now gone from 22 lines to 34 lines, but we can still see the shape and order of

the original four table hash join. (Hash Join Buffered is a threat!)

PX Plans
p. 26/ 34

Execution plan (hash / hash)

| Id | Operation | Name | Rows | Time | TQ |IN-OUT| PQ Distrib |
| 0 | SELECT STATEMENT | | | | | | |
| 1 | SORT AGGREGATE \ | 1] | | | [
2 PX COORDINATOR						
3	PX SEND QC (RANDOM)	:TQ10006	1]	Q1,06	P->S	QC (RAND)
4	SORT AGGREGATE		1	Q1,06	PCWP	
5 HASH JOIN		56	00:00:29	Q1,06	PCWP	
\ 6	JOIN FILTER CREATE	:BFO000	5] 00:00:01	Q1,06	PCWP	
\ 7 PX RECEIVE \	5] 00:00:01	Q1,06	PCWP			
8	PX SEND HASH	:TQ10004	5 1 00:00:01	Q1,04	P->P	HASH
9	PX BLOCK ITERATOR		5 1 00:00:01	Q1,04	PCWC	
[* 10	TABLE ACCESS FULL	T3	5] 00:00:01	Q1,04	PCWP	
11	PX RECEIVE \	810	00:00:29	Q1,06	PCWP	
12	PX SEND HASH	:TQ10005	810	00:00:29	Q1,05	P->P
13	JOIN FILTER USE	:BFO0O0O	810	00:00:29	Q1,05	PCWP
* 14	HASH JOIN BUFFERED \	810	00:00:29	Q1,05	PCWP	
15	JOIN FILTER CREATE	:BFO0OO1	4	00:00:01	Q1,05	PCWP
16	PX RECEIVE		4	00:00:01	Q1,05	PCWP
17	PX SEND HASH	:TQ10002	4	00:00:01	Q1,02	P->P
18	PX BLOCK ITERATOR \	4	00:00:01	Q1,02	PCWC	
19	TABLE ACCESS FULL	T2	4	00:00:01	Q1,02	PCWP
20	PX RECEIVE		14491	00:00:29	Q1,05	PCWP
21	PX SEND HASH	:TQI10003	14491	00:00:29	Q1,03	P->P
22	JOIN FILTER USE	:BFO001	14491	00:00:29	Q1,03	PCWP
23	HASH JOIN BUFFERED		14491	00:00:29	Q1,03	PCWP
24	JOIN FILTER CREATE	:BF0002	3	1 00:00:01	Q1,03	PCWP
25	PX RECEIVE		3	1 00:00:01	Q1,03	PCWP
26	PX SEND HASH	:TQ10000	3	00:00:01	Q1,00	P->P
27	PX BLOCK ITERATOR		3	00:00:01	Q1,00	PCWC
28	TABLE ACCESS FULL	T1	3	00:00:01	Q1,00	PCWP
29	PX RECEIVE		343K	00:00:29	Q1,03	PCWP
30	PX SEND HASH	:TQ10001	343K	00:00:29	Q1,01	P->P
31	JOIN FILTER USE	:BF0002	343K	00:00:29	Q1,01	PCWP
32	PX BLOCK ITERATOR		343K	00:00:29	Q1,01	PCWC
33	TABLE ACCESS FULL	T4	343K	00:00:29	Q1,01	PCWP

Jonathan Lewis
© 2011 - 2016

We now have seven table queues to follow. Notice how they don't follow a simple
consecutive pattern up the plan, though.

PX Plans
p.27/34

Execution plan (hash / hash)

| Id | Operation | Name | Rows | Time | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT \ | | | | | |

| 1 | SORT AGGREGATE \ | 1 | | |

| 2] PX COORDINATOR | | | | | | |

| 3 PX SEND QC (RANDOM) | :TQ10006 | 1 | Q1,06 | P->S | QC (RAND) |

| 4 SORT AGGREGATE \ | 1] | Q1,06 | PCWP | |

|* 5 | HASH JOIN \ | 56 | 00:00:29 | Q1,06 | PCWP | |

| 6 | JOIN FILTER CREATE | :BF0000 | 5 | 00:00:01 | Q1,06 | PCWP | | —

|7 PX RECEIVE | | 5 | 00:00:01 | Q1,06 | PCWP | |

|8 | PX SEND HASH | :TQ10004 | 5 | 00:00:01 | Q1,04 | P->P | HASH |

|9 | PX BLOCK ITERATOR \ | 5 | 00:00:01 | Q1,04 | PCWC | |

|* 10 | TABLE ACCESS FULL | T3 | 5 | 00:00:01 | Q1,04 | PCWP | |

|11 | PX RECEIVE | | 810 | 00:00:29 | Q1,06 | PCWP | |

|12 | PX SEND HASH | :TQ10005 | 810 | 00:00:29 | Q1,05 | P->P | HASH |

|13 | JOIN FILTER USE | :BFOO00 | 810 | 00:00:29 | Q1,05 | PCWP | |

|* 14 | HASH JOIN BUFFERED | | 810 | 00:00:29 | Q1,05 | PCWP |

| 15 | JOIN FILTER CREATE | :BFOOO1 | 4 | 00:00:01 | Q1,05 | PCWP | [

| 16 | PX RECEIVE \ | 4 | 00:00:01 | Q1,05 | PCWP | |

|17 | PX SEND HASH | :TQ10002 | 4 | 00:00:01 | Q1,02 | P->P | HASH |

| 18 | PX BLOCK ITERATOR | | 4 | 00:00:01 | Q1,02 | PCWC | |

|* 19 | TABLE ACCESS FULL | T2 | 4 | 00:00:01 | Q1,02 | PCWP | |

| 20 | PX RECEIVE | | 14491 | 00:00:29 | Ql,05 | PCWP | | We Create the filter
|21 | PX SEND HASH | :TQ10003 | 14491 | 00:00:29 | Q1,03 | P->P | HASH | .

| 22 | JOIN FILTER USE | :BFO001 | 14491 | 00:00:29 | Q1,03 | PCWP | . <J after we receive

|* 23 | HASH JOIN BUFFERED | | 14491 | 00:00:29 | Q1,03 | PCWP | | the build table (Tl)
| 24 | JOIN FILTER CREATE | :BF0002 | 3] 00:00:01 | Q1,03 | PCWP | |

| 25 | PX RECEIVE \ | 3] 00:00:01 | Q1,03 | PCWP | |

| 26 | PX SEND HASH | :TQ10000 | 3 | 00:00:01 | Q1,00 | P->P | HASH |

| 27 | PX BLOCK ITERATOR | | 3 | 00:00:01 | Q1,00 | PCWC | |

|* 28 | TABLE ACCESS FULL| T1 | 3 | 00:00:01 | Q1,00 | PCWP | |

| 29 | PX RECEIVE | | 343K| 00:00:29 | Q1,03 | PCWP | |

| 30 | PX SEND HASH | :TQ10001 | 343K| 00:00:29 | Q1,01 | P->P | HASH |]

| 31 | JOIN FILTER USE | :BF0002 | 343K| 00:00:29 | Q1,01 | PCWP | . <= We use it before we
| 32 | PX BLOCK ITERATOR | | 343K| 00:00:29 | Q1,01 | PCWC | | send the probe table
|* 33 | TABLE ACCESS FULL| T4 | 343K| 00:00:29 | 01,01 | PCWP | |

Jonathan Lewis | The plan includes several pairs of lines showing the creation and use of Bloom filters PX Plans

©2011 - 2016 (We have to ignore the BF numbers as they don't agree with the order of creation). p.28/34

Execution plan (hash / hash)

Predicate Information (identified by operation

id) :

5 - access ("T3"."ID"="T4" . "ID3")

10 - access(:Z2>=:7Z AND :7Z<=:7)
filter ((TO NUMBER ("T3"."SMALL VC")=1 OR TO NUMBER("T3"."SMALL VC")=2 OR
TO NUMBER ("T3"."SMALL VC")=3))
14 - access ("T2"."ID"="T4"."ID2")
19 - access(:Z2>=:7Z AND :7Z<=:7)
filter ((TO NUMBER ("T2"."SMALL VC")=1 OR TO NUMBER("T2"."SMALL VC")=2 OR
TO NUMBER ("T2"."SMALL VC")=3))
23 - access("T1"."ID"="T4" "ID1")
28 - access (:2>=:7Z AND :72<=:7)
filter ((TO NUMBER ("T1"."SMALL VC")=1 OR TO NUMBER("T1"."SMALL VC")=2 OR
TO NUMBER ("T1"."SMALL VC")=3))
33 - access(:2>=:72 AND :7Z<=:7)
filter (SYS_OP BLOOM FILTER(:BF0000,"T4"."ID1"))
Jonathan Lewis | Although the plan says we created and used three Bloom filters the predicate section PX Plans

© 2011 - 2016

only reports using one of them. We need to check execution stats. p.29/34

OEM monitor (119)

Oradle Enterprise Manager (TEST...

BB O EM Express - SQL Details for ... X%

+

.\(- | B8 () @ hitps:/finux11:1158/em/console/database/instance/sqiMonitor Detail?target = test.Jocaldomain&type=oracle_databasefsqld=dgSnvnfldws34astart=2016.5.30.19.3

c | ‘ Q, search

0| outlook Web App (7)) Dashboard <Oracke 5.. % Twitter @ Al Things Orack - Co... [®] OTN DB General [=] Space: PL/SQL | Orad..

My Oracle Support F| oracle Maiing List Arc.. & Google |

Details

Plan Statistics |€1jf) Parallel ||5Amvfty |

Plan Hash value 2607234228

Actual Rows| Memory (M...

Operation Name Estimated Rows Cost Timeline(0.120695s) Executions
|/ Bl SELECT STATEMENT I ———. 1 i

[SORT AGGREGATE 1 T — 1 1
i £l PX COORDINATOR I ———. 5 2
731} [l PX SEND QC (RANDOM) :TQ10006 1 T —— 2 2
& [SORT AGGREGATE 1 ., 2 2
73]] HASH JOIN 56 437 SRR 2 &0
731) [T JOIN FILTER CREATE *BrO000 5 3 7 57\
dﬁ O PX RECEIVE 5 2 ——— 2 5
7313 [l PX SEND HASH :TQ10004 5 2 —— 2 5
73] [PX ELOCK ITERATOR 5 o 2 5
73] TABLE ACCESS FULL T2 5 2 — 2 5
&5 [} PX RECEIVE 810 e o EEE—— 2 60
73] O PX SEND HASH 1TQ10005 810 o ——— 2 0 _J
7313 [JOIN FILTER USE :BFOO0O 810 435 ——— 2 840
73] £l HASH 10N BUFFERED 10 433 40
53] [E] JOIN FILTER CREATE :BFOOOL 4 o —— 2 4 A
ﬁ [} PX RECEIVE a o R, 2 4
73] O PX SEND HASH 1TQ10002 4 e EEE—— 2 4
qj) [l PX BLOCK ITERATOR 4 z 2 4
73] TABLE ACCESS FULL T2 4 e — 2 4
7313 [E] BX RECEIVE 14K L EEEEE—— 2 840
& [PX SEND HASH :TQ10003 14K b EEEE——— 2 e40)
[737] O JOIN FILTER USE {BFOOOL 14K 437 R, 2 15K
qj) [l HASH JOIN BUFFERED 14K PR ——— 2 15K
73]] JOIN FILTER CREATE {BFO002 2 2 . 2 3 A
@ B BX RECEIVE 3 2 ———————————] 3
5 [} PX SEND HASH :TQ10000 3 o M 2 3
[3°] B PX ELOCK ITERATOR 3 o —— 2 3
73] TABLE ACCESS FULL T1 3 2 ————. 2 3
73] O] PX RECEIVE 343K 477 R, 2 15K
7313 [BX SEND HASH :TQ10001 343K L o EEEEE—— 2 15K
73] [JOIN FILTER USE :BFO00Z 343K 477 S 2 15k~
[737] B BX ELOCK ITERATOR 343K L o EEEEE—— 2 15K
73] TABLE ACCESS FULL T4 343K 427 R, 36 15K

@ T1p: Right mouse ciick on the table allows to togghe between 10 Requests and 10 Bytes

Temp (Max) IO Requests

762KB

60

CPU Activity %

Wait Activity %

ot

[7start

@ 9|

=

. 19:51
A [o () 30/05/2016 "=

Jonathan Lewis
© 2011 - 2016

Compare the actual rows with estimates and you can see the "actual rows" figures

drop by N/70 before each join as each Bloom filter is used.

PX Plans
p.30/34

PQ Stats (hash / hash)

DFO NUMBER TQ ID SERVER TYPE INSTANCE PROCESS NUM ROWS
1 0 Producer 1 P002 3 scan ti1
1 P00O3 0 pass to 0/1 to build
Consumer 1 P0OOO 2
1 POO1 1 return filter (bl)
1 Producer 1 P002 7297 scan t4 filter (bl)
1 P003 7405 Pass to 0/1
Consumer 1 P0OOO 9801 buffer
1 POO1 4901 buffer
2 Producer 1 P0O0O 4 scan t2
1 POO1 0 pass to 2/3 to build
Consumer 1 P0OO2 3
1 POO3 1 return filter (b2)
Jonathan Lewis | The first two steps of the TQ stats show slave set 2 scanning t1 then scanning t4 with PX Plans

©2011 - 2016 a Bloom filter - but slave set 1 doesn't join the two rowsources straight away. p.31/34

PQ Stats (hash / hash)

DFO NUMBER TQ ID SERVER TYPE INSTANCE PROCESS NUM ROWS

3 Producer 1 P0O0O 560 t1/t4 filter (b2)
1 P0OO1 282 Pass to 2/3
Consumer 1 P0OO0O2 632 buffer
1 P0OO3 210 buffer
4 Producer 1 P002 5 scan t3
1 P00O3 0 pass to 0/1 to build
Consumer 1 POOO 4
1 POO1 1 return filter (b3)
5 Producer 1 P002 45 t2/(tl/t4) filter (b3)
1 P0OO3 15
Consumer 1 P0OOO 48 Pass to 0/1
1 POO1 12
6 Producer 1 P0O0O 1 Join t3/(t2/(tl/t4)
1 POO1 1 and aggregate results
Consumer 1 QC
Jonathan Lewis | After sending t2 to slave set 2, slave set 1 joins t1 and t4 and sends the result to slave PX Plans

©2011 - 2016 set 2 - but slave set 2 doesn't join these two rowsources straight away. p.32/34

Graphic (hash / hash)

P0O00/P001
@/@— td4/tl/t2
14700 rows B2 \ 60 rows
return Scan Joiry td/tl return o
filter £2 filter B2 filter join
t4/t1/t2/t3
TQO TQ 1 TQ 4 TQ5 Tge 299regate
QC
TQ?2 TQ3
scan scan t4 return scan join t4/tl/t2
£1 filter Bl filter t3 filter B3
P 1
td/tl
Bl B3
840 rows
g / N J
P002/P003 ~ ~
Jonathan Lewis | Buffering - we don't join then buffer, we just buffer the incoming probe data. PX Plans
©2011 - 2016 Note the recurring groups of 3 - scan X, get filter X, join previous and use filter X. p.33/34

Observations

* Follow the TQxxyyyy name order - within DFO tree
— "Name" = :TOxxyyy and "TQ" = QxX,yyyy
« Hash Join Buffered may spill the "large table" to disc

— Use lots of memory and broadcast

* Bloom filters "hide" (in 119)
— Look at v$pg_tgstat, 10046, OEM Monitor (v$sql_monitor)

« Bloom filter numbering is "wrong"
— (The same is true of DFO trees)

« Keep an eye on vdpq_tqgstat for uneven distribution
— But it has many limitations. SQL Monitor is far better if licensed

Jonathan Lewis
© 2011 - 2016

PX Plans
p.34/34

